×

Study of vibrations in micro-scale piezothermoelastic beam resonator utilising modified couple stress theory. (English) Zbl 1518.74034

Summary: This paper deals with the study of vibrations in piezothermoelastic microbeam resonator using modified couple stress theory. The closed form expressions for deflection, electric potential and temperature distribution for the beam have been derived. The solution is presented under clamped-free boundary condition. Analytical expressions for thermoelastic damping, frequency shift and attenuation are obtained and effects of electric potential, thermal relaxation time, temperature, beam dimensions and couple stress have been depicted graphically. The numerical results are presented with the help of MATLAB programming software in case of a lead zirconate titanate (PZT)-5A material.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F15 Electromagnetic effects in solid mechanics
74F05 Thermal effects in solid mechanics
74M25 Micromechanics of solids
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yurke, B.; Greywall, DS; Parqellis, AN; Busch, PA, Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator, Phys. Rev. A, 51, 4211-4229 (1995) · doi:10.1103/PhysRevA.51.4211
[2] Cleland, AN; Roukes, ML, Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett., 69, 2653-2655 (1996) · doi:10.1063/1.117548
[3] Lun, FY; Zhang, P.; Gao, FB; Jia, HG, Design and fabrication of micro-optomechanical vibration sensor, Microfabr. Technol., 120, 1, 61-64 (2006)
[4] Anton, SR; Sodano, HA, A review of power harvesting using piezoelectric materials (2003-2006), Smart Mater. Struct., 16, 3, R1 (2007) · doi:10.1088/0964-1726/16/3/R01
[5] Shaikh, FK; Zeadally, S., Energy harvesting in wireless sensor networks: a comprehensive review, Renew. Sustain. Energy Rev., 55, 1041-54 (2016) · doi:10.1016/j.rser.2015.11.010
[6] Safaei, M.; Sodano, H.; Anton, S., A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018), Smart Mater. Struct., 28, 11, 113001 (2019) · doi:10.1088/1361-665X/ab36e4
[7] Zener, C., Internal friction in solids. I. Theory of internal friction in reeds, Phys. Rev., 52, 3, 230-235 (1937) · JFM 63.1341.03 · doi:10.1103/PhysRev.52.230
[8] Zener, C., Internal friction in solids II. General theory of thermoelastic internal friction, Phys. Rev., 53, 1, 90-99 (1938) · JFM 64.1420.03 · doi:10.1103/PhysRev.53.90
[9] Zener, C.; Otis, W.; Nuckolls, R., Internal friction in solids III. Experimental demonstration of thermoelastic internal friction, Phys. Rev., 53, 1, 100-101 (1938) · JFM 64.1421.01 · doi:10.1103/PhysRev.53.100
[10] Duwel, A.; Gorman, J.; Weinstein, M.; Borenstein, J.; Warp, P., Experimental study of thermoelastic damping in MEMS gyros, Sens. Act, A, 103, 70-75 (2003) · doi:10.1016/S0924-4247(02)00318-7
[11] Evoy, S.; Oikhovets, A.; Sekaric, L.; Parpia, JM; Craighead, HG; Carr, DW, Temperature dependent internal friction in silicon nano-electromechanical systems, Appl. Phys. Lett., 77, 2397-2399 (2000) · doi:10.1063/1.1316071
[12] Lifshitz, R.; Roukes, ML, Thermoelastic damping in micro- and nano mechanical systems, Phys. Rev. B, 61, 5600-5609 (2000) · doi:10.1103/PhysRevB.61.5600
[13] Prabhakar, S.; Paidousis, MP; Vengallatore, S., Analysis of frequency shifts due to thermoelastic coupling inflexural-mode micromechanical and nanomechanical resonators, J. Sound Vib., 323, 385-396 (2009) · doi:10.1016/j.jsv.2008.12.010
[14] Sharma, JN; Grover, D., Thermoelastic vibrations in micro-/nano-scale beam resonators with voids, J. Sound Vib., 330, 2964-2977 (2011) · doi:10.1016/j.jsv.2011.01.012
[15] Rezazadeh, G.; Vahdat, AS; Pesteii, SM; Farzi, B., Study of thermoelastic damping in capacitive micro-beam resonators using hyperbolic heat conduction model, Sens. Trans. J., 108, 9, 54-72 (2009)
[16] Vahdat, AS; Rezazadeh, G., Effect of axial and residual stresses on thermoelastic damping in capacitive microbeam resonators, J. Frankl. Inst., 348, 622-639 (2011) · Zbl 1331.74173 · doi:10.1016/j.jfranklin.2011.01.007
[17] Curie, J.; Curie, P., Developpement, par pression, dele’le ectricide Polaire dans les cristaux he’ miedres a’ faces inclinies, Comptes Rendus de ll Academie des Sci., 91, 294-295 (1880)
[18] Mindlin, R.D.: On the equations of motion of piezoelectric crystals. In: Radok, J (ed.) Problem of Continuum Mechanics Contributions in Honor of the 70th Birthday of NI Muskhelishvili. Philadelphia, PA: SIAM.70, 282-290 (1961a)
[19] Mindlin, RD; Parkus, H., Equation of high frequency vibrations of thermopiezoelectric plates, Interactions in Elastic Solids (1979), Vienna: Springer-Verlag, Vienna
[20] Nowacki, W., Some general theorems of thermo-piezoelectricity, J. Thermal Stresses., 1, 171-182 (1978) · doi:10.1080/01495737808926940
[21] Nowacki, W.: Foundation of linear piezoelectricity, In Parkus, H. (Ed.), Interactions in Elastic Solids, Springer, Wein, Chapter 1. (1979b)
[22] Nowacki, W.: Mathematical models of phenomenological piezoelectricity, in New Problems in Mechanicsof Continua 0. Brulin and R. Hsieh, (eds.), pp. 30-50, University of Waterloo Press, Ontario. (1983c)
[23] Chandrasekharaiah, D., A temperature-rate-dependent theory of thermopiezoelectricity, J. Therm. Stresses, 7, 293-306 (1984) · doi:10.1080/01495738408942213
[24] Voigt, W.: Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals). Abh. Gesch. Wissenschaften, 34 (1887)
[25] Cosserat, E.; Cosserat, F., Théorie des corps déformables (Theory of Deformable Bodies) (1909), Paris: A. Hermann et Fils, Paris
[26] Toupin, RA, Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 385-414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[27] Mindlin, RD; Tiersten, HF, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415-448 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[28] Koiter, WT, Couple stresses in the theory of elasticity, I and II, Proc. Ned. Akad. Wet. B, 67, 17-44 (1963)
[29] Mindlin, RD, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[30] Yang, F.; Chong, ACM; Lam, DCC; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743 (2002) · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[31] Park, SK; Gao, X., A new Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., 16, 11, 2355-2359 (2006) · doi:10.1088/0960-1317/16/11/015
[32] Asghari, M.; Kahrobaiyan, MH; Ahmadian, MT, A nonlinear Timoshenko beam formulation based on the modified couple stress theory, Int. J. Eng. Sci., 48, 12, 1749-1761 (2010) · Zbl 1231.74258 · doi:10.1016/j.ijengsci.2010.09.025
[33] Asghari, M.; Taati, E., A size-dependent model for functionally graded micro-plates for mechanical analyses, J. Vib. Control, 19, 11, 1614-1632 (2012) · doi:10.1177/1077546312442563
[34] Şimşek, M.; Reddy, JN, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, Int. J. Eng. Sci., 64, 37-53 (2013) · Zbl 1423.74517 · doi:10.1016/j.ijengsci.2012.12.002
[35] Krysko, AV; Awrejcewicz, J.; Zhigalov, MV; Pavlov, S., Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams, Int. J. Non Linear Mech., 93, 106-121 (2017) · doi:10.1016/j.ijnonlinmec.2017.03.006
[36] Krysko, AV; Awrejcewicz, J.; Pavlov, S.; Zhigalov, MV, Mathematical model of a three-layer micro- and nano-beams based on the hypotheses of the Grigolyuk-Chulkov and the modified couple stress theory, Int. J. Solids Str., 117, 39-50 (2017) · doi:10.1016/j.ijsolstr.2017.04.011
[37] Sharma, JN; Pal, M.; Chand, D., Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials, J. Sound Vib., 284, 227-248 (2005) · doi:10.1016/j.jsv.2004.06.036
[38] Kong, S.; Zhou, S.; Nie, Z.; Wang, K., The size-dependent natural frequency of Bernoulli- Euler micro-beams, Int. J. Eng. Sci., 46, 5, 427-37 (2008) · Zbl 1213.74189 · doi:10.1016/j.ijengsci.2007.10.002
[39] Wang, B.; Zhao, J.; Zhou, S., A micro scale Timoshenko beam model based on strain gradient elasticity theory, Eur. J. Mech. A. Solids, 29, 4, 591-99 (2010) · Zbl 1480.74194 · doi:10.1016/j.euromechsol.2009.12.005
[40] Ansari, R.; Gholami, R.; Faghih Shojaei, M.; Mohammadi, V.; Sahmani, S., Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Compos. Struct., 100, 385-397 (2013) · doi:10.1016/j.compstruct.2012.12.048
[41] Reddy, N., Microstructure-dependent couple stress theories of functionally graded beams, J. Mech. Phys. Solids, 59, 11, 2382-2399 (2011) · Zbl 1270.74114 · doi:10.1016/j.jmps.2011.06.008
[42] Krysko, VA; Awrejcewicz, J.; Kutepov, IE; Zagniboroda, NA; Papkova, IV; Serebryakov, AV; Krysko, AV, Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena, Phys. Lett. A, 377, 2058-2061 (2013) · doi:10.1016/j.physleta.2013.06.040
[43] Asghari, M.; Kahrobaiyan, MH; Nikfar, M.; Ahmadian, MT, A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory, Acta Mech., 223, 6, 1233-49 (2012) · Zbl 1401.74164 · doi:10.1007/s00707-012-0625-0
[44] Ghayesh, M.; Farokhi, H.; Amabili, M., Nonlinear dynamics of a micro-scale beam based on the modified couple stress theory, Compos. B Eng., 50, 318-324 (2013) · doi:10.1016/J.COMPOSITESB.2013.02.021
[45] Awrejcewicz, J.; Krysko, VA; Pavlov, SP; Zhigalov, MV; Kalutsky, LA; Krysko, AV, Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory, Nonlinear Dyn., 99, 919-943 (2020) · Zbl 1459.74009 · doi:10.1007/s11071-019-04976-w
[46] Krysko, VA; Awrejcewicz, J.; Kutepov, IE; Babenkova, TV; Krysko, V., Size-dependent non-linear dynamics of curvilinear flexible beams in a temperature field, Appl. Math. Model., 67, 283-296 (2019) · Zbl 1481.74445 · doi:10.1016/j.apm.2018.10.026
[47] Grover, D.; Sharma, JN, Transverse vibrations in piezothermoelastic beam resonators, J. Int. Mater. Sys. Str., 27, 1, 77-84 (2011) · doi:10.1177/1045389X11430740
[48] Sun, Y.; Fang, D.; Soh, AK, Thermoelastic damping in micro-beam resonators, Int. J. Solids Str., 43, 10, 3213-3229 (2006) · Zbl 1120.74445 · doi:10.1016/j.ijsolstr.2005.08.011
[49] Sharma, JN; Pal, M.; Chand, D., Three dimensional vibration analysis of a piezothermoelastic cylindrical panel, Int. J. Eng. Sci., 42, 1655-1673 (2004) · doi:10.1016/j.ijengsci.2004.01.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.