×

Matching pursuit decomposition for high-resolution direction of arrival. (English) Zbl 1435.94067

Summary: Time-frequency analysis was combined with array processing to develop a direction of arrival (DOA) estimation method. Spatial time-frequency distribution (STFD) was introduced as the natural means to deal with source signals that are localizable in the time-frequency (TF) domain. It was shown that estimating the signal and noise subspaces are improved by constructing the subspaces from the TF signatures of the signal arrivals rather than from the spatial data covariance matrix, which is commonly used in conventional multiple signal classification (MUSIC). However, the instantaneous frequency signature is needed in real application of STFD. For this purpose, identification of auto-term regions are needed and it is often difficult for really closed space sources because cross terms mask the auto terms. It means the cross term amplitude is greater than the auto terms. In this paper, three high-resolution DOA estimation approaches of non-stationary narrowband signals using matching pursuit (MP), are developed. We demonstrate the proposed technique’s source discriminatory capability, its robustness against noise, and employing for underdetermined problem as well. In this paper, we consider the first sensor output as reference and decompose it by using MP decomposition based on Gabor and chirplet dictionaries. The coefficients of MP contain the steering vector information and so they can be used to estimate the DOA. In addition, the chosen MP atoms are used to implement the modified STFD based on Wigner Ville distribution and Rihaczek time frequency distribution as well. We show that using either coefficients or chosen atoms to estimate the DOA in array processing outperforms the conventional MUSIC for different scenarios. Some simulation results, showing the performance of three proposed approaches based on MP and also showing their advantages and drawbacks, are presented.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Software:

Algorithm 820
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amin, M. G. (1999). Spatial time-frequency distributions for direction finding and blind source separation. Proceedings of the SPIE Wavelet Conference, 3723, 62-70. · doi:10.1117/12.342958
[2] Amin, M. G., & Zhang, Y. (2000). Direction finding based on spatial time-frequency distribution matrices. Digital Signal Processing, 10(4), 325-339. · doi:10.1006/dspr.2000.0374
[3] Angrisani, L., Arco, M. D., Moriello, R. S. L. (2004). Warblet transform-based method for instantaneous frequency measurement on multicomponent signals. In IEEE on 50th international conference on ultrasonics, ferroelectrics, and frequency, control, pp. 500-508.
[4] Angrisani, L., Arco, M. D., Moriello, R. S. L., & Vadursi, M. (2005). On the use of the Warblet transform for instantaneous frequency estimation. IEEE Transactions on Instrumentation and Measurement, 54(4), 1374-1380. · doi:10.1109/TIM.2005.851060
[5] Belouchrani, A., & Amin, M. G. (1999). Time frequency MUSIC. IEEE Signal Processing Letter, 6(5), 109-110. · doi:10.1109/97.755429
[6] Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal- part 1: Fundamental. Proceedings of the IEEE, 80(4), 520-538. · doi:10.1109/5.135376
[7] Bultan, A. (1999). A four-parameter atomic decomposition of chirplets. IEEE Transactions on Signal Processing, 47(3), 731-745. · Zbl 0979.94006 · doi:10.1109/78.747779
[8] Chen, V. C., Ling, H. (2002). Time-frequency transform for radar imaging and signal analysis. Book, ch. 3. · Zbl 1001.94003
[9] Choi, H. I., & Williams, W. J. (1989). Improved time-frequency representation of multi component signals using exponential kernel. IEEE Transactions on Acoustic Speech and Signal Processing, 37(6), 862-871. · doi:10.1109/ASSP.1989.28057
[10] Cohen, L. (1989). Time-frequency distribution—a review. Proceedings of the IEEE, 77(7), 941-980. · doi:10.1109/5.30749
[11] Cohen, L. (1995). Time-frequency analysis. Englewood Cliffs: Prentice-Hall.
[12] Cotter, S. F. (2007). Multiple snapshot matching pursuit for direction of arrival (DOA) estimation. In 15th European Signal Processing Conference, pp. 247-251.
[13] Cui, J., & Wong, W. (2006). The adaptive chirplet transform and visual evoked potentials. IEEE Transactions on Biomedical Engineering, 53(7), 1378-1384. · doi:10.1109/TBME.2006.873700
[14] Diethorn, E. J. (1994). The generalized exponential time-frequency distribution. IEEE Transactions on Signal Processing, 42(5), 1028-1037. · doi:10.1109/78.295214
[15] Farden, D. C., & Scharf, L. L. (2004). Estmating time-frequency distributions and scattering functions using the Rihaczek distribution. IEEE on sensor array and multichannel signal processing workshop, pp. 470- 474. · Zbl 1369.94234
[16] Ferrando, S. E., & Kolasa, L. A. (2002). Algorithm 820: A flexible implementation of matching pursuit for Gabor functions on the interval. ACM Transactions on Mathematics Software, 28(3), 337-353. · Zbl 1073.94503 · doi:10.1145/569147.569151
[17] Gabor, D. (1946). Theory of communication. Journal Institute of Electronics Engineering, 93(3), 429-457.
[18] Ghofrani, S., McLernon, D. C., & Ayatollahi, A. (2003). Comparing Gaussian and chirplet dictionaries for time-frequency analysis using matching pursuit decomposition. In The 3rd IEEE international symposium on signal processing and information technology, pp. 713-716.
[19] Ghofrani, S., McLernon, D. C., & Ayatollahi, A. (2008). Conditional spectral moments in matching pursuit based on the chirplet elementary function. Digital Signal Processing, 18, 694-708. · doi:10.1016/j.dsp.2007.10.011
[20] Ghofrani, S., & McLernon, D. C. (2009). Auto Wigner-Ville distribution via non adaptive and adaptive signal decomposition. Signal Processing, 89, 1540-1549. · Zbl 1178.94071 · doi:10.1016/j.sigpro.2009.02.004
[21] Ghofrani, S., Amin, M. G., & Zhang, Y. D. (2013). High-resolution direction finding of non-stationary signals using matching pursuit. Elsevier Signal Processing Journal, 93, 3466-3478. · doi:10.1016/j.sigpro.2013.03.016
[22] Guo, Z., Durand, L. G., & Lee, H. C. (1994). The time-frequency distributions of nonstationary signals based on a Bessel kernel. IEEE Transactions on Signal Processing, 42(7), 1700-1707. · doi:10.1109/78.298277
[23] Hong, Z., Zheng, B. (2000). An efficient algorithm for adaptive chirplet-based signal decomposition. In 5th IEEE international conference on signal processing (ICSP), pp. 366-368. · Zbl 1369.94234
[24] Jeong, J., & Williams, W. J. (1992). Kernel design for reduced interference distributions. IEEE Transactions on Signal Processing, 40(2), 402-412. · doi:10.1109/78.124950
[25] Karabulut, G .Z., Kurt, T., & Yongacoglu, A. (2005). Estimation of directions of arrivals by matching pursuit (EDAMP). EURASIP Journal on Wireless Communications and Networking, 2, 197-205. · Zbl 1109.94317
[26] Karabulut, G. Z., Kurt, T., Yongacoglu, A. (2004). Angle of arrival detection by matching pursuit algorithm. In 60th IEEE Vehicular Technology Conference, pp. 324-328. · Zbl 1178.94071
[27] Krishnan, S., & Rangayyan, R. M. (1999). Denoising knee joint vibration signals using adaptive time-frequency representations. In IEEE Canadian conference on electrical and, computer engineering, pp. 1495- 1500.
[28] Li, F., & Liu, H. (1993). Performance analysis for DOA estimation algorithms: Unification, simplification, and observation. IEEE Transactions on Aerospace and Electronic Systems, 29(4), 1170-1184. · doi:10.1109/7.259520
[29] Lu, Y., Demirli, R., Cardoso, G., & Saniie, J. (2006). A successive parameter estimation algorithm for chirplet signal decomposition. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(11), 2121-2131. · doi:10.1109/TUFFC.2006.152
[30] Mallat, S. G., & Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397-3415. · Zbl 0842.94004 · doi:10.1109/78.258082
[31] Mann, S., & Haykin, S. (1992). Chirplets and warblets: Novel time-frequency methods. Electronics Letters, 28(2), 114-116. · doi:10.1049/el:19920070
[32] Mann, S., & Haykin, S. (1995). The chirplet transform: Physical considerations. IEEE Transactions on Signal Processing, 43, 2745-2761. · doi:10.1109/78.482123
[33] Matz, G., & Hlawatsch, F. (2003). Wigner distributions (nearly) everywhere: time-frequency analysis of signals, systems, random processes, signal spaces, and frames. Elsevier, Signal Processing, 83, 1355-1378. · Zbl 1144.94350 · doi:10.1016/S0165-1684(03)00086-0
[34] Mu, W., Amin, M. G., & Zhang, Y. (2003). Bilinear signal synthesis in array processing. IEEE Transactions on Signal Processing, 51(1), 90-100. · Zbl 1369.94234 · doi:10.1109/TSP.2002.806577
[35] Nguyen, L. T., Belouchrani, A., Abed-Meraim, K., & Boashash, B. (2001). Separating more sources than sensors using time-frequency distributions. In International symposium on signal processing and its application (ISSPA), pp. 583-586. · Zbl 1127.94322
[36] Orr, S. (1993). The order of computation for finite discrete Gabor transforms. IEEE Transactions on Signal Processing, 41(1), 122-130. · Zbl 0771.65100 · doi:10.1109/TSP.1993.193132
[37] Papandreou, A., & Bartels, G. F. (1993). Generalization of the Choi-Williams distribution and the butterworth distribution for time frequency analysis. IEEE Transactions on Signal Processing, 41(1), 463-472. · doi:10.1109/TSP.1993.193179
[38] Praxmeyer, L., & Wodkiewicz, K. (2003). Quantum interference in the Kirkwood-Rihaczek representation. Elsevier Journal of Optical Communications, 223, 349-365. · doi:10.1016/S0030-4018(03)01682-1
[39] Qian, S., & Chen, D. (1999). Understanding the nature of signals whose power spectrum change with time, joint analysis. IEEE Signal Processing Magazine, 16(2), 52-67. · Zbl 0842.94004
[40] Qigard, T. A., Scharf, L. L., & Hanssen, A. (2004). Multivariate multidimensional Rihaczek spectra and associated canonical correlations. IEEE on sensor array and multichannel signal processing workshop, pp. 547-551.
[41] Rihaczek, A. W. (1968). Signal energy distribution in time and frequency. IEEE Transactions on Information Theory, 14(3), 369-374. · doi:10.1109/TIT.1968.1054157
[42] Ruiz, N., Vera, P., Curpian, J., Martinez, D., & Mata, R. (2003). Matching pursuit-based signal processing method to improve ultrasonic flaw detection in ndt application. IET, Journals and Magazines, 20th Electronics Letters, 39(4), 413-414. · doi:10.1049/el:20030262
[43] Ruiz-Reyes, N., Vera-Candeas, P., Curpian-Alonso, J., Mata-Campos, R., & Cuevas-Martinez, J. C. (2005). New matching pursuit-based algorithm for SNR improvement in ultrasonic NDT. NDT &E Intrenational, 38, 453-458. · doi:10.1016/j.ndteint.2004.12.001
[44] Scharf, L. L., Friedlander, B., Flandrin, P., Hanssen, A. (2001). The Hilbert space geometry of the stochastic Rihaczek distribution. In IEEE on 35th Asilomar Conference on Signals, Systems and Computers, pp. 720-725. · Zbl 0979.94006
[45] Scharf, L. L., Schreier, P. J., & Hanssen, A. (2005). The Hilbert space geometry of the Rihaczek distribution for stochastic analytic signals. IEEE on Signal Processing Letters, 12(4), 297-300. · doi:10.1109/LSP.2005.843772
[46] Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, AP-34(3), 276-280. · doi:10.1109/TAP.1986.1143830
[47] Sekihara, K., Nagarajan, S., Poeppel, D., & Miyashita, Y. (1999). Time frequency MEG-MUSIC algorithm. IEEE Transactions on Medical Imaging, 18(1), 92-97. · doi:10.1109/42.750262
[48] Sharif, W. (2010). Robust direction-of-arrival estimation for FM sources in the presence of impulsive noise. In IEEE International Conference on Acoustics Speech and Signal Processing, pp. 3662-3665.
[49] Sharif, W., Chakhchoukh, Y., Zoubir, A. M. (2011). Direction-of-arrival estimation of FM sources based on robust spatial time-frequency distribution matrices. In IEEE Statistical on Signal Processing, Workshop, pp. 537-540. · Zbl 1223.94010
[50] Sharif, W., Chakhchoukh, Y., & Zoubir, A. M. (2011). Robust spatial time-frequency distribution matrix estimation with application to direction-of-arrival estimation. Signal Processing, 91(11), 2630-2638. · Zbl 1223.94010 · doi:10.1016/j.sigpro.2011.05.022
[51] Thomson, D. J. (2005). Quadratic-inverse expansion of the Rihaczek distribution. In IEEE on 39th Asilomar Conference on Signals, Systems, and Computers, pp. 912-915.
[52] Ville, J. (1948). Theorie et applications de la notion de signal analytique, (in France). Cables et Transmission, 2, 61-74.
[53] Wang, X. (2007). Quadrature doppler ultrasound signal denoising based on matching pursuits with different time-frequency dictionaries. In International conference on mechatronics and automation, pp. 2298-2303.
[54] Wang, Y., Jiang, Y. (2006). Modified adaptive chirplet decomposition and its efficient implementation. In 8th international conference on signal processing (ICSP), pp. 16-20.
[55] Wigner, E. P. (1971). Quantum-mechanical distribution functions revisited. In Perspective in quantum theory. Newyork, NY.
[56] Xia, X. G., & Chen, V. C. (1999). A quatitative SNR analysis for the pseudo Wigner-Ville distribution. IEEE Trans. Signal Processing, 47(10), 2891-2894. · Zbl 1075.94518 · doi:10.1109/78.790673
[57] Xu, G., & Gao, J. (2008). A new method of weak signal detection based on improved matching pursuit algorithm. In Proceedings of the IEEE international joint conference on neural networks, pp. 538-542.
[58] Yin, Q., Qian, S., & Fenga, A. (2002). Fast refinement for adaptive Gaussian chirplet decomposition. IEEE Transactions on Signal Processing, 50(6), 1298-1306. · Zbl 1369.42023 · doi:10.1109/TSP.2002.1003055
[59] Zeng, D., Zeng, X., Cheng, H., & Tang, B. (2012). Automatic modulation classification of radar signals using the Rihaczek distribution and Hough transform. IET Radar, Sonar and Navigation, 6(5), 322-331. · doi:10.1049/iet-rsn.2011.0338
[60] Zhang, Y., & Amin, M. G. (2000). Spatial averaging of time frequency distributions for signal recovery in uniform linear array. IEEE Transactions on Signal Processing, 48(10), 2892-2902. · doi:10.1109/78.869043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.