Summary: The purpose of this paper is to study spectral properties of a family of Cayley graphs on finite commutative rings. Let R be such a ring and R^\times be its set of units. Let $Q_R = \{u^2 : u \in R^\times\}$ and $T_R = Q_R \cup (-Q_R)$. We define the quadratic unitary Cayley graph of R, denoted by G_R, to be the Cayley graph on the additive group of R with respect to T_R: that is, G_R has vertex set R such that $x, y \in R$ are adjacent if and only if $x - y \in T_R$. It is well known that any finite commutative ring R can be decomposed as $R = R_1 \times R_2 \times \cdots \times R_s$, where each R_i is a local ring with maximal ideal M_i. Let R_0 be a local ring with maximal ideal M_0 such that $|R_0|/|M_0| \equiv 3 \pmod{4}$. We determine the spectra of G_R and $G_{R_0 \times R}$ under the condition that $|R_i|/|M_i| \equiv 1 \pmod{4}$ for $1 \leq i \leq s$. We compute the energies and spectral moments of such quadratic unitary Cayley graphs, and determine when such a graph is hyperenergetic or Ramanujan.

Keywords: spectrum; quadratic unitary Cayley graph; Ramanujan graph; energy of a graph; spectral moment

doi:10.1016/j.laa.2015.03.037