×

The propagation of sound in particle models of compressible fluids. (English) Zbl 1512.76099

Summary: The finite mass method is a purely Lagrangian scheme for the spatial discretisation of the macroscopic phenomenological laws that govern the flow of compressible fluids. In this article we investigate how to take into account long range gravitational forces in the framework of the finite mass method. This is achieved by incorporating an extra discrete potential energy of the gravitational field into the Lagrangian that underlies the finite mass method. The discretisation of the potential is done in an Eulerian fashion and employs an adaptive tensor product mesh fixed in space, hence the name finite mass mesh method for the new scheme. The transfer of information between the mass packets of the finite mass method and the discrete potential equation relies on numerical quadrature, for which different strategies will be proposed. The performance of the extended finite mass method for the simulation of two-dimensional gas pillars under self-gravity will be reported.

MSC:

76Q05 Hydro- and aero-acoustics
76M28 Particle methods and lattice-gas methods

Software:

TREESPH; GOTPM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benz, W.: Smooth particle hydrodynamics – a review. In: Buchler, J.: (ed.), Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects, p. 269–. Dordrecht, The Netherlands (1990)
[2] Bubeck, T.: The Finite Mass Method with Fields. PhD thesis, Fakultät für Mathematik und Physik, Universität Tübingen, Tübingen, Germany (2003)
[3] Chorin, A., Marsden, J.: A Mathmatical Introduction to Fluid Mechanics. Springer, Berlin Heidelberg New York (1993) · Zbl 0774.76001
[4] Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. Interscience Publishers, New York (1948) · Zbl 0041.11302
[5] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1. Springer, Berlin (1990) · Zbl 0784.73001
[6] Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Eng. 1, 3–35 (1989) · Zbl 0706.65111 · doi:10.1016/0899-8248(89)90018-9
[7] Dubinski, J., Kim, J., Humble, C.P.R.: Gotpm: a parallel hybrid particle-mesh treecode. New Astronomy 9, 111–126 (2004) · doi:10.1016/j.newast.2003.08.002
[8] Gauger, C.: Erweiterung der Methode der Finiten Massen. PhD thesis, Tübingen, http://w210.ub.uni-tuebingen.de/dbt/volltexte/2000/178/(2000)
[9] Gauger, C., Leinen, P., Yserentant, H.: The finite mass method. SIAM J. Numer. Anal. 37, 1768–1799 (2000) · Zbl 1049.76054 · doi:10.1137/S0036142999352564
[10] Griebel, M.: Zur Lösung von Finite-Differenzen-und Finite-Element-Gleichungen mittels der Hierarchischen-Trans-formations-Mehr-gitter-Me-thode. Technical Report TUM-INFO-01-90-I07-450, SFB 342, Institut für Informatik, TU München, München, Germany (1990)
[11] Gurtin, M.: An Introduction to Continuum Mechanics, vol. 158 of Mathematics in Science and Engineering. Academic Press, New York (1981) · Zbl 0559.73001
[12] Hernquist, L., Katz, N.: Treesph – a unification of sph with the hierarchical tree method. Astrophysical Journal, Supplement 70, 419–446 (1989) · doi:10.1086/191344
[13] Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997) · Zbl 0888.65032 · doi:10.1137/S0036142995280572
[14] Klingler, M.: Die Methode der Finiten Massen in der astrophysikalischen Hydrodynamik. PhD thesis, Institut für Physik, Universität Tübingen, Tübingen, Germany (2003)
[15] Klingler, M., Leinen, P., Yserentant, H.: The finite mass method on domains with boundary. Report 184, SFB 382, Universität Tübingen, Tübingen, Germany. Submitted to SIAM J. Sci. Comp. (2003) · Zbl 1149.76660
[16] Klingler, M., Leinen, P., Yserentant, H.: A restart procedure for the finite mass method. Report, SFB 382, Universität Tübingen, Tübingen, Germany (2004). In preparation. · Zbl 1253.76113
[17] Landau, L., Lifschitz, E.: Lehrbuch der theoretischen Physik, Mechanik, vol. I. Akademie Verlag, Berlin (1990) · Zbl 0099.39602
[18] Landau, L., Lifschitz, E.: Lehrbuch der theoretischen Physik, Hydrodynamik, volume VI. Akademie Verlag, Berlin (1991) · Zbl 0201.30501
[19] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK (2000) · Zbl 0948.35001
[20] Monaghan, J.: Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 543–574 (1992) · doi:10.1146/annurev.aa.30.090192.002551
[21] Yserentant, H.: A particle model of compressible fluids. Numer. Math. 76, 111–142 (1997) · Zbl 0874.76068 · doi:10.1007/s002110050256
[22] Yserentant, H.: Entropy generation and shock resolution in the particle model of compressible fluids. Numer. Math. 82, 161–177 (1999) · Zbl 0951.76077 · doi:10.1007/s002110050415
[23] Yserentant, H.: Particles of variable size. Numer. Math. 82, 143–159 (1999) · Zbl 0951.76076 · doi:10.1007/s002110050414
[24] Yserentant, H.: The propagation of sound in particle models of compressible fluids. Numer. Math. 88, 581–601 (2001) · Zbl 1033.76047 · doi:10.1007/s211-001-8016-8
[25] Yserentant, H.: The convergence of the finite mass method for flows in given force and velocity fields. In: Griebel, M., Schweitzer, M. (eds.) Meshfree Methods for Partial Differential Equations, vol. 26 of Lecture Notes in Computational Science and Engineering. (2002) · Zbl 1090.76056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.