Summary: Let D be a digraph with vertex set $V(D)$. A vertex x is a k-king of D, if for every $y \in V(D)$, there is an (x, y)-path of length at most k. A subset N of $V(D)$ is k-independent if for every pair of vertices $u, v \in N$, we have $d(u, v) \geq k$ and $d(v, u) \geq k$; it is l-absorbent if for every $u \in V(D) - N$ there exists $v \in N$ such that $d(u, v) \leq l$. A (k, l)-kernel of D is a k-independent and l-absorbent subset of $V(D)$. A k-kernel is a $(k, k - 1)$-kernel. A digraph D is k-quasitransitive, if for any path $x_0x_1 \ldots x_k$ of length k, x_0 and x_k are adjacent. In this article, we will prove that a k-quasitransitive digraph with $k \geq 4$ has a k-king if and only if it has a unique initial strong component and the unique initial strong component is not isomorphic to an extended $(k + 1)$-cycle $C[E_0, E_1, \ldots, E_k]$ where each E_i has at least two vertices. Using this fact, we show that every strong k-quasitransitive digraph has a $(k + 1)$-kernel.

Keywords: quasitransitive digraph; k-quasitransitive digraph; k-king; k-kernel

doi:10.1002/jgt.21814