Summary: Let G be a nontrivial connected graph with an edge-coloring $c : E(G) \rightarrow \{1, 2, \ldots, q\}$, $q \in \mathbb{N}$, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset $S \subseteq V(G)$, a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of $V(G)$ is called the k-rainbow index of G, denoted by $r_x k(G)$. In this paper, we first determine the graphs of size m whose 3-rainbow index equals m, $m - 1$, $m - 2$ or 2. We also obtain the exact values of $r_x 3(G)$ when G is a regular multipartite complete graph or a wheel. Finally, we give a sharp upper bound for $r_x 3(G)$ when G is 2-connected and 2-edge connected. Graphs G for which $r_x 3(G)$ attains this upper bound are determined.

Keywords: rainbow tree; S-tree; k-rainbow index

doi:10.7151/dmgt.1780