Symmetric cubic graphs with solvable automorphism groups.

Summary: A cubic graph Γ is G-arc-transitive if $G \leq \text{Aut}(\Gamma)$ acts transitively on the set of arcs of Γ, and G-basic if Γ is G-arc-transitive and G has no non-trivial normal subgroup with more than two orbits. Let G be a solvable group. In this paper, we first classify all connected G-basic cubic graphs and determine the group structure for every G. Then, combining covering techniques, we prove that a connected cubic G-arc-transitive graph is either a Cayley graph, or its full automorphism group is of type 2^2, that is, a 2-regular group with no involution reversing an edge, and has a non-abelian normal subgroup such that the corresponding quotient graph is the complete bipartite graph of order 6.

Keywords: G-arc-transitive cubic graph; connected G-basic cubic graphs
doi:10.1016/j.ejc.2014.10.008