Entanglement entropy in quasi-symmetric multi-qubit states.

Li, Zhi-Hua; Wang, An-Min

Summary: We generalize the symmetric multi-qubit states to their q-analogs, whose basis vectors are identified with the q-Dicke states. We study the entanglement entropy in these states and find that entanglement is extruded towards certain regions of the system due to the inhomogeneity aroused by q-deformation. We also calculate entanglement entropy in ground states of a related q-deformed Lipkin-Meshkov-Glick (LMG) model and show that the singularities of entanglement can correctly signify the quantum phase transition points for different strengths of q-deformation.

Keywords: quantum entanglement; quantum spin chain; quantum group
doi:10.1142/S0219749915500070