Xu, Kexiang; Wang, Jinlan; Das, Kinkar Ch.; Klavžar, Sandi

Weighted Harary indices of apex trees and k-apex trees.

Summary: If G is a connected graph, then $H_A(G) = \sum_{u \neq v} (\deg(u) + \deg(v))/d(u,v)$ is the additively Harary index and $H_M(G) = \sum_{u \neq v} \deg(u) \deg(v)/d(u,v)$ the multiplicatively Harary index of G. G is an apex tree if it contains a vertex x such that $G - x$ is a tree and is a k-apex tree if k is the smallest integer for which there exists a k-set $X \subseteq V(G)$ such that $G - X$ is a tree. Upper and lower bounds on H_A and H_M are determined for apex trees and k-apex trees. The corresponding extremal graphs are also characterized in all the cases except for the minimum k-apex trees, $k \geq 3$. In particular, if $k \geq 2$ and $n \geq 6$, then $H_A(G) \leq (k + 1)(3n^2 - 5n - k^2 - k + 2)/2$ holds for any k-apex tree G, equality holding if and only if G is the join of K_k and $K_{1,n-k-1}$.

Keywords: additively Harary index; multiplicatively Harary index; apex tree; k-apex tree; harmonic number
doi:10.1016/j.dam.2015.01.044