Xu, Shou-Jun; Zhang, Heping; Cai, Jinzhuan

Complete forcing numbers of catacondensed hexagonal systems.

Summary: Let G be a graph with edge set $E(G)$ that admits a perfect matching M. A forcing set of M is a subset of M contained in no other perfect matchings of G. A global forcing set of G, introduced by Vukičević et al., is a subset of $E(G)$ on which there are distinct restrictions of any two different perfect matchings of G. Combining the above “forcing” and “global” ideas, we introduce and define a complete forcing set of G as a subset of $E(G)$ on which the restriction of any perfect matching M of G is a forcing set of M. The minimum cardinality of complete forcing sets is the complete forcing number of G. First, we establish some initial results about these two novel concepts, including a criterion for a complete forcing set, and comparisons between the complete forcing number and global forcing number. Then, we give an explicit formula for the complete forcing number of a hexagonal chain. Finally, a recurrence relation for the complete forcing number of a catacondensed hexagonal system is derived.

Keywords: perfect matching; Kekulé structure; forcing number; forcing set; global forcing number; complete forcing number; catacondensed hexagonal system
doi:10.1007/s10878-013-9624-x