The flattened permutation Flatten(π) associated to a permutation π is obtained by writing π in standard cycle notation (smallest letter in each cycle first, and in increasing order of these smallest letters), e.g., 71564328 = (172)(3546)(8) → 17235468. Note that this is not a bijection from \(S_n \) to itself. A permutation π is said to contain the generalised pattern 13-2 if there exist \(2 \leq i < j \leq n \) such that \(π_{i-1} < π_j < π_i \), and avoid it if no such \(i, j \) exist. This article counts the number of occurrences of the pattern 31-2 “flattenings” of permutations. First, the authors consider the row generating function

\[
g_n(q) = \sum_{\pi \in S_n} q^{\text{number of occurrences of 31-2 in Flatten(\pi)}},
\]

and give an explicit recursive formula for it. Fix an \(r \in \mathbb{N} \). The bulk of the paper is devoted to proving that the (column) generating function for the number of permutations whose flattenings contain \(r \) occurrences of the pattern 31-2 is a rational function. The proof uses the structure of the recurrence of \(g_n(q) \) and the kernel method.

Arvind Ayyer (Bangalore)

Keywords: pattern counting; permutation; flattened permutation; recurrence relation; kernel method

doi:10.1080/10236198.2014.977273