Summary: This paper considers the optimal management problem of a finite-capacity M/M/1/K queueing system with subject to server breakdowns. When the number of customers reaches its capacity K, no further arriving customers are allowed to enter the system. Customers are allowed to the system with probability p or the customers are still unable to enter the system with probability $1 - p$ as the queue length decreases to a certain threshold value F. By applying the birth-and-death process, some important performance measures are derived. A cost model, developed to determine the optimal continuous and discrete control parameters for the (p, F)-policy at a minimum cost, and sensitivity analysis are also studied.

Keywords: queueing system; server breakdowns; optimal control