Downhill domination problem in graphs.

Summary: A path $\pi = (v_1, v_2, \ldots, v_{k+1})$ in a graph $G = (V, E)$ is a downhill path if for every i, $1 \leq i \leq k$, $\deg(v_i) \geq \deg(v_{i+1})$, where $\deg(v_i)$ denotes the degree of vertex $v_i \in V$. A downhill dominating set DDS is a set $S \subseteq V$ having the property that every vertex $v \in V$ lies on a downhill path originating from some vertex in S. The downhill domination number $\gamma_{dn}(G)$ equals the minimum cardinality of a DDS of G. A DDS having minimum cardinality is called a γ_{dn}-set of G. In this note, we give an enumeration of all the distinct γ_{dn}-sets of G, and we show that there is a linear time algorithm to determine the downhill domination number of a graph.

Keywords: combinatorial problems; downhill domination number; direct dominating set; linear time algorithm

doi:10.1016/j.ipl.2015.02.003