Summary: Given a proper edge k-coloring ϕ and a vertex $v \in V(G)$, let $C_\phi(v)$ denote the set of colors used on edges incident to v with respect to ϕ. The adjacent vertex distinguishing index of G, denoted by $\chi'_a(G)$, is the least value of k such that G has a proper edge k-coloring which satisfies $C_\phi(u) \neq C_\phi(v)$ for any pair of adjacent vertices u and v. In this paper, we show that if G is a connected planar graph with maximum degree $\Delta \geq 12$ and without 3-cycles, then $\Delta \leq \chi'_a(G) \leq \Delta + 1$, and $\chi'_a(G) = \Delta + 1$ if and only if G contains two adjacent vertices of maximum degree. This extends a result by K. Edwards et al. [Graphs Comb. 22, No. 3, 341–350 (2006; Zbl 1107.05032)], which says that if G is a connected bipartite planar graph with $\Delta \geq 12$ then $\chi'_a(G) \leq \Delta + 1$.

Keywords: adjacent vertex distinguishing coloring; planar graph; maximum degree; cycle
doi:10.1016/j.disc.2014.10.010