The cycle structure for directed graphs on surfaces.

Summary: In this paper, the cycle structures for directed graphs on surfaces are studied. If G is a strongly connected graph, C is a Π-contractible directed cycle of G, then both of Int(C, Π) and Ext(C, Π) are strongly connected graph; the dimension of the cycles space of G is identified. If G is a strongly connected graph, then the structure of MCB in G is unique. Let G be a strongly connected graph, if G has been embedded in orientable surface S_g with $f_w(G) \geq 2$ ($f_w(G)$ is the face-width of G), then any cycle base of G must contain at least $2g$ noncontractible directed cycles; if G has been embedded in non-orientable surface N_g, then any cycle base of G must contain at least g noncontractible directed cycles.

Keywords: directed graph; strongly connected; directed cycles; cycles space
doi:10.1007/s10114-015-3452-0