Two methods on computing g^ah^b in a group.

Summary: In applied cryptography, computing the group element g^ah^b is very common and very important. Especially, in the verifying step of many digital signature algorithms, the computing of g^ah^b is always required. Two methods on computing g^ah^b in a group are proposed in this paper. For general groups, a new left-to-right encoding algorithm, which transforms (a, b) to its unsigned three-element joint sparse form, is presented. Therefore, computing g^ah^b needs to scan the binary representation only once. For the groups in which computing the inverse of a given element is easy, such as elliptic curve, a method for transforming (a, b) to its five-element joint sparse form is suggested. A theoretical analysis and numerical comparisons show that the developed methods are as effective as current encoding methods, but simpler than them.

Keywords: cryptography; unsigned three element joint form; five element joint sparse form