Summary: The skew energy of an oriented graph G^σ, denoted by $E_s(G^\sigma)$, is defined as the sum of the singular values of its skew adjacency matrix $S(G^\sigma)$. The connected k-regular oriented graph on n vertices having skew energy \sqrt{kn} is called the optimum skew energy k-regular oriented graph. In this paper, we determine the 4-regular graphs G such that each of them has an orientation σ satisfying G^σ which is an optimum skew energy oriented graph. In addition, as by-product we obtain a method to construct optimum skew energy k-regular oriented graphs with large order.

Keywords: skew energy of an oriented graph; 4-regular graphs

doi:10.1016/j.ejc.2013.04.010