Vaught’s theorem on axiomatizability by a scheme.

Vaught’s set theory \mathbf{VS} is the theory (in the language with $=$ and \in) with the axioms

$$\forall x_0, \ldots, x_{n-1} \exists y \forall u (u \in y \iff \bigvee_{i<n} u = x_i)$$

for $n = 0, 1, 2, \ldots$.

A Vaught theory is a theory that directly interprets (that is, the interpretation is not relativized and translates identity to identity) \mathbf{VS}. Vaught’s theorem says: all recursively enumerable Vaught theories are axiomatizable by a scheme. The theory of unordered pairing \mathbf{VS}_2 is the theory (in the language with $=$ and \in) with (essentially) the axiom $\forall x_0, x_1 \exists y \forall u (u \in y \iff u = x_0 \lor u = x_1)$. A pair theory is a theory that directly interprets \mathbf{VS}_2. The main theorem of the paper under review says: all recursively enumerable pair theories are axiomatizable by a scheme. Visser’s theorem strictly improves Vaught’s theorem (because there are consistent decidable pair theories but all consistent Vaught theories are essentially undecidable).

Jaime Gaspar (Lisboa)

Keywords: predicate logic; Vaught’s theorem; axiomatizability by a scheme; Vaught theory; unordered pairing; pair theory

doi:10.2178/bsl/1344861888 euclid:bsl/1344861888